Future batteries, coming soon: Charge in seconds, last months

0
44
Subscribe to our newsletter

While smartphones, smart homes and even smart wearables are growing ever more advanced, they’re still limited by power. The battery hasn’t advanced in decades. But we’re on the verge of a power revolution.

Big technology and car companies are all too aware of the limitations of lithium-ion batteries. While chips and operating systems are becoming more efficient to save power we’re still only looking at a day or two of use on a smartphone before having to recharge.

Hopefully, you’ll be seeing some of this tech in your gadgets soon.
Asymmetric temperature modulation

Subscribe to our newsletter

Subscribe to our newsletter

Research has demonstrated a charging method that takes us a step closer to extreme fast charging – XFC – which aims to deliver 200 miles of electric car range in about 10 minutes with 400kW charging. One of the issues with charging is Li plating in batteries, so the asymmetric temperature modulation method charges at a higher temperature to reduce plating, but limits that to 10 minutes cycles, avoiding solid-electrolyte-interphase growth, which can reduce battery life. The method is reported to reduce battery degradation while allowing XFC charging.
Power Over The Air Sand battery gives three times more battery life
This alternative type of lithium-ion battery uses silicon to achieve three times better performance than current graphite li-ion batteries. The battery is still lithium-ion like the one found in your smartphone, but it uses silicon instead of graphite in the anodes.
Scientists at the University of California Riverside have been focused on nano silicon for a while, but it’s been degrading too quickly and is tough to produce in large quantities. By using sand it can be purified, powdered then ground with salt and magnesium before being heated to remove oxygen resulting in pure silicon. This is porous and three-dimensional which helps in performance and, potentially, the life-span of the batteries. We originally picked up on this research in 2014 and now it’s coming to fruition.
Silanano is a battery tech startup that’s bringing this technique to market and has seen big investment from companies like Daimler and BMW. The company say that its solution can be dropped into existing lithium-ion battery manufacturing, so it’s set for scalable deployment, promising 20 per cent battery performance boost now, or 40 per cent in the near future.
Capturing energy from Wi-Fi

While wireless inductive charging is common, being able to capture energy from Wi-Fi or other electromagnetic waves remains a challenge. A team of researchers, however, has developed a rectenna (radio wave harvesting antenna) that is only several atoms think, making it incredibly flexible.
The idea is that devices can incorporate this molybdenum disulphide-based rectenna so that AC power can be harvested from Wi-Fi in the air and converted to DC, either to recharge a battery or power a device directly.

That could see powered medical pills without the need for an internal battery (safer for the patient), or mobile devices that don’t need to be connected to a power supply to recharge.
Energy harvested from the device owner

You could be the source of power for your next device, if research into TENGs comes to fruition. A TENG – or triboelectric nanogenerator – is a power harvesting technology which captures the electric current generated through contact of two materials.


A research team at Surrey’s Advanced Technology Institute and the University of Surrey have given an insight into how this technology might be put into place to power things like wearable devices. While we’re some way from seeing it in action, the research should give designers the tools they need to effectively understand and optimise future TENG implementation.

Subscribe to our newsletter